При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: А1Б1В4Г2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1.	Одноатомными молекулами	(н.	y.)	образовано простое вещество:	
		(J-)	,	

1) озон 2) криптон 3) водород 4) кислород

2. Укажите символ химического элемента:

1) H 2)
$$C_{60}$$
 3) Br_2 4) O_3

3. Основные свойства высших оксидов предложенных элементов монотонно усиливаются в ряду:

4. Ионные связи содержатся во всех веществах ряда:

5. В порядке увеличения температур кипения вещества расположены в ряду:

```
1) метан, пропан, метанол, этиленгликоль 2) метан, пропан, этиленгликоль, метанол
```

3) пропан, метан, этиленгликоль, метанол 4) метан, метанол, пропан, этиленгликоль

6. Веществом, образующим альдегид при взаимодействии с водой $(\mathrm{H}^+,\mathrm{Hg}^{2+})$, является:

7. К классу альдегидов относится вещество, название которого:

8. В атоме химического элемента X в основном состоянии электроны распределены по энергетическим уровням следующим образом: 2, 8, 5. Степень окисления X в высшем оксиде равна:

1)
$$-3$$
 2) -5 3) $+5$ 4) $+2$

9. В отличие от разбавленной концентрированная серная кислота:

- а) вытесняет HCl из твёрдого NaCl;
- б) НЕ реагирует с медью;
- в) реагирует с NaHCO₃;
- г) при взаимодействии с цинком НЕ образует водород.

10. Для реакции
$$C_6H_6 + NHO_3$$
 (конц.) — H_2SO_4 (конц.), t \to укажите верные утверждения:

а — реакция отщепления

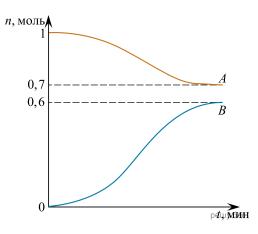
б — реакция замещения

в — органический продукт реакции — нитробензол

г — органический продукт реакции содержит серу

11. Два кислотных оксида образуются в результате химического превращения:

1)
$$NH_3 + O_2 \xrightarrow{t^{\circ}, kt}$$
; 2) $Fe(OH)_3 \xrightarrow{t^{\circ}}$; 3) $C_2H_4 + O_2 \xrightarrow{t^{\circ}}$; 4) $CS_2 + O_2$ (изб.) $\xrightarrow{t^{\circ}}$.


12. Выберите утверждения, верно характеризующие магний:

- а) реагирует с горячей водой с образованием щёлочи;
- б) массовая доля в его фосфиде равна 60,8 %;
- в) можно получить электролизом расплава его иодида;
- г) при его участии осуществляется процесс фотосинтеза.

1)
$$6$$
, 8 ; 2) 8 , Γ ; 3) a , 6 , Γ ; 4) a , Γ .

- 13. Выберите утверждения, верно характеризующие этин:
- а) в молекуле две π -связи;
- б) молекула имеет угловое строение;
- в) обесцвечивает бромную воду;
- г) при 20 °C представляет собой хорошо растворимую в воде жидкость.

14. На графике представлена зависимость количеств исходного вещества (A) и продукта (B) от времени протекания некоторой реакции. В уравнении этой реакции коэффициент перед формулой A равен 2. Определите коэффициент перед формулой B:

- 1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
- 15. Водный раствор фенолфталеина окрасится, если к нему добавить:

3) CaCl₂

4) FeO

- 16. В отличие от метанола пропанол-1 вступает в реакцию:
 - 1) с металлическим калием; 2) с уксусной кислотой в присутствии серной кислоты;

3) с бромоводородом;

4) внутримолекулярной дегидратации;

5) с подкисленным раствором перманганата калия.

5) Ag

17. Установите соответствие между названием органического вещества и общей формулой гомологического ряда, к которому относится данное вещество.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: $A2E2B5\Gamma I$.

18. Определите коэффициент перед формулой продукта восстановления в уравнении химической реакции, протекающей по схеме:

$$NaNO_2 + FeSO_4 + H_2SO_4 = Fe_2(SO_4)_3 + Na_2SO_4 + NO + H_2O$$

- 19. В четырёх пронумерованных пробирках находятся растворы неорганических веществ. О них известно следующее:
- вещества из пробирок 1 и 4 нейтрализуют друг друга;
- вещества из пробирок 3 и 4 реагируют между собой с образованием осадка, который растворяется как в кислотах, так и в щелочах:
- при добавлении к содержимому пробирки 2 вещества из пробирки 4 образуется осадок, который на воздухе приобретает бурую окраску.

Установите соответствие между названием неорганического вещества и номером пробирки, в которой находится раствор данного вещества.

НАЗВАНИЕ ВЕЩЕСТВА	№ ПРОБИРКИ
А) сульфат цинка	1
Б) азотная кислота	2
В) хлорид железа(II)	3
Г) гидроксид натрия	4

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: $A2E4B3\Gamma I$.

- 20. Будет наблюдаться выпадение белого осадка при добавлении бромной воды к обоим веществам
- 1) олеиновой кислоте и гексану
- 2) бензолу и фенолу
- 3) анилину и фенолу
- 4) изопрену и бензолу
- 21. Расставьте коэффициенты методом электронного баланса в уравнении окислительно-восстановительной реакции, схема которой

$$KBr + K_2Cr_2O_7 + H_2SO_4 \longrightarrow Br_2 + K_2SO_4 + Cr_2(SO_4)_3 + H_2O.$$

Укажите сумму коэффициентов перед веществами молекулярного строения.

- 22. К раствору сульфата меди(II) массой 800 г с массовой долей CuSO₄ 7% добавили медный купорос массой 80 г и персмешали смесь до полного его растворения. Рассчитайте массовую долю (%) соли в полученном растворе.
 - 23. Дана схема превращений

$$CH_4 \xrightarrow{1500 \, {}^{\circ}\text{C}} X_1 \xrightarrow{C \, (\text{акт.}), \, t} X_2 (1 \, \text{моль}) \xrightarrow{1 \, \text{моль} \, HNO_3 \, (\text{конц.}) / H_2SO_4 \, (\text{конц.}), \, t}$$

$$\longrightarrow X_3 \xrightarrow{\text{Fe}/\text{HBr} \, (\text{изб.})} X_4 \xrightarrow{\text{KOH}} X_5.$$

Определите сумму молярных масс (г/моль) органических веществ X_4 и X_5 .

- **24.** Зеленовато-жёлтый газ А (примерно в два с половиной раза тяжелее воздуха) реагирует с самым лёгким газом Б с образованием вещества В. Водный раствор вещества В является сильной кислотой. При взаимодействии В с газом Г, образующимся при действии гидроксида натрия на соли аммония, образуется соль Д, использующаяся при пайке. Найдите сумму молярных масс (г/моль) веществ В и Д.
- 25. При добавлении к раствору кислой соли А соляной кислоты выделяется газ Б. Газ Б не поддерживает горение. При пропускании Б через известковую воду выпадает осадок В, который растворяется в избытке Б. Газ Б образуется при сгорании углеводородов. При добавлении к раствору кислой соли А гидроксида натрия образуется газ Г (легче воздуха), имеющий резкий запах. Газ Г вызывает посинение влажной лакмусовой бумажки. При окислении газа Г в присутствии Рt образуется несолеобразующий оксид Д. Укажите сумму молярных масс (г/моль) кислой соли А и несолеобразующего оксида Д.
- **26.** Определите сумму молярных масс (г/моль) азотсодержащих веществ X_3 и X_5 , образовавшихся в результате превращений, протекающих по схеме

$$\mathrm{NH_3} \xrightarrow{\mathrm{O}_2, t, \mathrm{KaT}} \mathrm{X_1} \xrightarrow{\mathrm{BO3ДYX}} \mathrm{X_2} \xrightarrow{\mathrm{Ca(OH)_2~(p-p)~/~O_2}, t} \mathrm{X_3} \xrightarrow{\mathrm{CuSO_4}} \mathrm{X_4} \xrightarrow{\mathrm{K_2S}} \mathrm{X_5}.$$

- 27. В четырех пронумерованных пробирках находятся растворы неорганических веществ. О них известно следующее:
- вещества из пробирок 2 и 3 нейтрализуют друг друга, способны растворять цинк, его оксид и гидроксид;
- вещества из пробирок 3 и 4 реагируют между собой с образованием осадка, способного растворяться как в кислотах, так и в щелочах;
- при электролизе расплава вещества из пробирки 1 выделяется газ (н. у.) зеленовато-желтого цвета, имеющий характерный запах.

Установите соответствие между содержимым пробирки и ее номером.

СОДЕРЖИМОЕ ПРОБИРКИ	№ ПРОБИРКИ
А) гидроксид калия	1
Б) сульфат алюминия	2
В) азотная кислота	3
Г) хлорид натрия	4

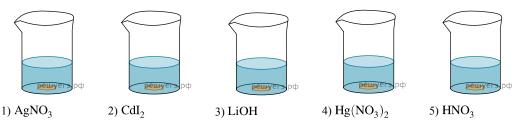
Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б1B3Г4.

28. Выберите четыре утверждения, верно характеризующие аммиак.

1	НЕ реагирует с оксидом кальция
2	вступает в окислительно-восстановительную реакцию с уксусной кислотой
3	в водном растворе меняет окраску индикаторов
4	в промышленности реакция его получения из простых веществ протекает при пониженной температуре
5	при растворении в воде образует катион аммония и гидроксид-ион
6	используется для получения аммофоса

Ответ запишите цифрами (порядок записи цифр не имеет значения), например: 1246.

29. Установите соответствие между схемой обратимой реакции и направлением смещения равновесия при увеличении давления.


A)
$$N_2$$
 (г.) $+$ H_2 (г.) \iff NH_3 (г.) $+$ Q
Б) O_2 (г.) \iff O_3 (г.) - Q
В) N_2 (г.) $+$ O_2 (г.) \iff NO (г.) - Q
Г) C_3H_8 (г.) \iff C_3H_6 (г.) $+$ H_2 (г.) - Q

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: $A152B3\Gamma3$.

- **30.** Уксусная кислота широко применяется в качестве консерванта (пищевая добавка E260). В быту чаще всего используют уксус (массовая доля кислоты 9%, $\rho = 1.01 \Gamma/\text{cm}^3$) или уксусную эссенцию (массовая доля кислоты 70%, $\rho = 1.07 \Gamma/\text{cm}^3$). Для консервирования овощей требуется 225cm³ уксуса. Вычислите, в каком объеме воды (см³) необходимо растворить уксусную эссенцию, чтобы приготовить раствор для консервирования.
- **31.** Определите сумму молярных масс (г/моль) органических веществ молекулярного строения A и немолекулярного строения Д и Г, полученных в результате превращений:

пропанол-1
$$\xrightarrow{\mathrm{CuO},\ \mathrm{t}^{\circ}\mathrm{C}}$$
 А $\xrightarrow{\mathrm{KMnO_4}}$ Б $\xrightarrow{\mathrm{C_2H_5OH}}$ В $\xrightarrow{\mathrm{LiOH}}$ Р $\xrightarrow{\mathrm{H_2O},\ \mathrm{t}^{\circ}\mathrm{C}}$ Р $\xrightarrow{\mathrm{LiOH}}$ Г Д

- **32.** Дан перечень неорганических веществ: негашеная известь, оксид фосфора(V), оксид серы(VI), сернистый газ, оксид лития. Определите число веществ, которые могут реагировать с водой при комнатной температуре
 - 33. В каждый из пяти стаканов, наполненных разбавленными водными растворами, поместили по одной медной монете.

Определите число стаканов, в которых масса монеты НЕ изменилась.

- **34.** Для анализов смеси хлоридов натрия и аммония провели следующие операции. Навеску смеси массой 5г растворили в воде. К полученному раствору прибавили 300г раствора гидроксида калия с массовой долей КОН 2,8% и нагрели до полного удаления аммиака. В образовавшийся раствор добавили метиловый оранжевый, а затем акуратно прибавляли соляную кислоту, пока среда раствора не стала нейтральной. Объем израсходованной кислоты равен 150см³, концентрация *HCl* в кислоте 0,5моль/дм³. Вычислите массовую долю(%) хлорида аммония в исходной смеси.
 - 35. Расположите водные растворы веществ в порядке уменьшения их рН:
 - 1) 0,5 моль/дм³ Na₂SO₄
 - 2) $0.5 \text{ моль/дм}^3 \text{ H}_2 \text{SO}_4$
 - 3) 0,5 моль/дм³ CH₃COOH
 - 4) 0,5 моль/дм³ HNO₃
- **36.** В избытке воды растворили 25 г медного купороса, а затем 14 г сульфида бария. Образовавшуюся смесь профильтровали, осадок отделили и высушили. Вычислите массу (г) полученного в результате эксперимента твердого остатка.

37. Составьте полные ионные уравнения реакций. Установите соответствие между реакцией и суммой коэффициентов в правой части полного ионного уравнения. Все электролиты взяты в виде разбавленных водных растворов.

A)
$$\text{LiOH} + \text{HNO}_3 \longrightarrow$$
 1) 1
B) $\text{NH}_4\text{Cl} + \text{KOH} \longrightarrow$ 2) 2
B) $\text{Ba} + \text{H}_2\text{O} \longrightarrow$ 3) 3
C) $\text{K}_2\text{SO}_4 + \text{BaCl}_2 \longrightarrow$ 4) 4
5) 5

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б4B3Г5.

38. В растворе, полученном добавлением азотной кислоты к разбавленной серной кислоте, суммарная молярная концентрация анионов равна 0,009 моль/дм³, а значение pH 2. Считая, что обе кислоты полностью распадаются на ионы, вычислите количество (моль) азотной кислоты в этом растворе объемом 1 м^3 .